GPU Pool
This quick guide will guide you on how to use a GPU pool.
CUDA
https://developer.nvidia.com/cuda-downloads
Runtime
1nvcc -V
Driver
1nvidia-smi
PyTorch
https://pytorch.org/get-started/locally/
install
1pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 --trusted-host mirrors.aliyun.com
version
1pip show torch
torch-script
1import torch
2print(torch.__version__)
cuda-script
1import torch
2print(torch.cuda.is_available())
3print(torch.version.cuda)
update
1pip install --upgrade pytorch torchvision --trusted-host mirrors.aliyun.com
uninstall
1pip uninstall torch
Hardware
Hardware Requirement
Bits | 7B | 13B | 30B | 65B | 8X7B | |
---|---|---|---|---|---|---|
Full | 16 (2 bytes) | 160GB | 320GB | 600GB | 1200GB | 900GB |
Freeze | 16 (2 bytes) | 20GB | 40GB | 120GB | 240GB | 200GB |
LoRA | 16 (2 bytes) | 16GB | 32GB | 80GB | 160GB | 120GB |
QLoRA | 8 (1 bytes) | 10GB | 16GB | 40GB | 80GB | 80GB |
QLoRA | 4 (0.5 bytes) | 6GB | 12GB | 24GB | 48GB | 32GB |
Calculation formula (estimation): Memory = Number of parameters × Number of bytes (QLoRA 4) = 30,000,000,000 × 0.5 = 15,000,000,000 bytes 15,000,000,000 bytes / 1024 / 1024 / 1024 = 13.97G Simplified: 15,000,000,000 bytes / 1000 / 1000 / 1000 = 15G